Skip to main content

difference between a HUB SWITCH and the ROUTER

Hubs, switches, and routers are all devices that let you connect one or more computers to other computers, networked devices, or to other networks. Each has two or more connectors called ports into which you plug in the cables to make the connection. Varying degrees of magic happen inside the device, and therein lies the difference. I often see the terms misused so let's clarify what each one really means.

A hub is typically the least expensive, least intelligent, and least complicated of the three. Its job is very simple: anything that comes in one port is sent out to the others. That's it. Every computer connected to the hub "sees" everything that every other computer on the hub sees. The hub itself is blissfully ignorant of the data being transmitted. For years, simple hubs have been quick and easy ways to connect computers in small networks.

A switch does essentially what a hub does but more efficiently. By paying attention to the traffic that comes across it, it can "learn" where particular addresses are. For example, if it sees traffic from machine A coming in on port 2, it now knows that machine A is connected to that port and that trafficto machine A needs to only be sent to that port and not any of the others. The net result of using a switch over a hub is that most of the network traffic only goes where it needs to rather than to every port. On busy networks this can make the network significantly faster.

"Varying degrees of magic happen inside the device, and therein lies the difference."

A router is the smartest and most complicated of the bunch. Routers come in all shapes and sizes from the small four-port broadband routers that are very popular right now to the large industrial strength devices that drive the internet itself. A simple way to think of a router is as a computer that can be programmed to understand, possibly manipulate, and route the data its being asked to handle. For example, broadband routers include the ability to "hide" computers behind a type of firewall which involves slightly modifying the packets of network traffic as they traverse the device. All routers include some kind of user interface for configuring how the router will treat traffic. The really large routers include the equivalent of a full-blown programming language to describe how they should operate as well as the ability to communicate with other routers to describe or determine the best way to get network traffic from point A to point B.

A quick note on one other thing that you'll often see mentioned with these devices and that's network speed. Most devices now are capable of both 10mps (10 mega-bits, or million bits, per second) as well as 100mbs and will automatically detect the speed. If the device is labeled with only one speed then it will only be able to communicate with devices that also support that speed. 1000mbs or "gigabit" devices are starting to slowly become more common as well. Similarly many devices now also include 802.11b or 802.11g wireless transmitters that simply act like additional ports to the device.


Popular posts from this blog

UPGRADING EOS in the ARISTA Switches

UPGRADING EOS in the ARISTA Switches: EOS is the Firmware for Arista Switches whereas IOS for Cisco. This blog post shows the detailed procedures to follow and to upgrade the EOS in the Arista Switches. This Post was supports for any platform or the Version you are going to upgrade in the Arista Switches. This Post was divided into three parts : Pre-Upgrade Process Upgrade Process Post-Upgrade Process PRE-UPGRADING-PROCESS: 1       1)        Check the Upgrade Path tool by clicking the below link. https://www.arista.com/en/support/mlag-portal/mlaglist and confirm it is in mlag issu compatible 2)       Check if the  STP agent is restartable by giving the command switch-1# show spanning-tree bridge detail | grep agent Stp agent restartable                      :      ...

FORTIGATE ACTIVE PASSIVE UPGRADE

FORTIGATE ACTIVE PASSIVE UPGRADE : This blog post shows the detailed procedures to follow and to upgrade the firmware in the Fortigate Firewall. This Post was supports for any platform or the Version you are going to upgrade in the Fortigate Firewall This Post was divided into three parts : Pre-Upgrade Process Upgrade Process Post-Upgrade Process PRE UPGRADE STEPS: 1   1)     Go to the below website and check the Upgrade Path https://docs.fortinet.com/upgrade-tool 2)        Next Login to the Fortigate Console and check the HA Status ( it is to be In sync and higher Priority enabled for the required primary device) 3)        Login to the Console and give the command Config global – get sys ha status Also check session pickup is in enable to avoid session interruptions in failover. 4)        Download all the Firmware’s and the md5 files in the list and ch...

DIFFERENCE BETWEEN THE LAN AND WAN (local area network ,wide area network

Improve The other difference between LAN and WAN, is the speed of the network . The maximum speed of a LAN can be 1000 megabits per second, while the speed of a WAN can go up to 150 megabits per second. This means the speed of a WAN, is one-tenth of the speed of a LAN. A WAN is usually slower because it has lower bandwidth. Computers in a LAN can share a printer, if they are all in the same LAN. On the other hand, a WAN cannot share a printer, so a computer in one country cannot use a printer in another country. A LAN does not need a dedicated computer to direct traffic to and from the Internet, unlike a WAN that needs a special-purpose computer, whose only purpose is to send and receive data from the Internet. Another LAN vs. WAN comparison is the cost of the network. A WAN is more expensive than a LAN. It is easier to expand a LAN than a WAN. The equipment needed for a LAN is a network interface card (NIC), a switch and a hub. On the other hand, the equipment needed to connec...